3.179 \(\int x (a+b \sin ^{-1}(c x))^{3/2} \, dx\)

Optimal. Leaf size=172 \[ \frac {3 \sqrt {\pi } b^{3/2} \sin \left (\frac {2 a}{b}\right ) C\left (\frac {2 \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b} \sqrt {\pi }}\right )}{32 c^2}-\frac {3 \sqrt {\pi } b^{3/2} \cos \left (\frac {2 a}{b}\right ) S\left (\frac {2 \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b} \sqrt {\pi }}\right )}{32 c^2}+\frac {3 b x \sqrt {1-c^2 x^2} \sqrt {a+b \sin ^{-1}(c x)}}{8 c}-\frac {\left (a+b \sin ^{-1}(c x)\right )^{3/2}}{4 c^2}+\frac {1}{2} x^2 \left (a+b \sin ^{-1}(c x)\right )^{3/2} \]

[Out]

-1/4*(a+b*arcsin(c*x))^(3/2)/c^2+1/2*x^2*(a+b*arcsin(c*x))^(3/2)-3/32*b^(3/2)*cos(2*a/b)*FresnelS(2*(a+b*arcsi
n(c*x))^(1/2)/b^(1/2)/Pi^(1/2))*Pi^(1/2)/c^2+3/32*b^(3/2)*FresnelC(2*(a+b*arcsin(c*x))^(1/2)/b^(1/2)/Pi^(1/2))
*sin(2*a/b)*Pi^(1/2)/c^2+3/8*b*x*(-c^2*x^2+1)^(1/2)*(a+b*arcsin(c*x))^(1/2)/c

________________________________________________________________________________________

Rubi [A]  time = 0.52, antiderivative size = 172, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 11, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.786, Rules used = {4629, 4707, 4641, 4635, 4406, 12, 3306, 3305, 3351, 3304, 3352} \[ \frac {3 \sqrt {\pi } b^{3/2} \sin \left (\frac {2 a}{b}\right ) \text {FresnelC}\left (\frac {2 \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {\pi } \sqrt {b}}\right )}{32 c^2}-\frac {3 \sqrt {\pi } b^{3/2} \cos \left (\frac {2 a}{b}\right ) S\left (\frac {2 \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b} \sqrt {\pi }}\right )}{32 c^2}+\frac {3 b x \sqrt {1-c^2 x^2} \sqrt {a+b \sin ^{-1}(c x)}}{8 c}-\frac {\left (a+b \sin ^{-1}(c x)\right )^{3/2}}{4 c^2}+\frac {1}{2} x^2 \left (a+b \sin ^{-1}(c x)\right )^{3/2} \]

Antiderivative was successfully verified.

[In]

Int[x*(a + b*ArcSin[c*x])^(3/2),x]

[Out]

(3*b*x*Sqrt[1 - c^2*x^2]*Sqrt[a + b*ArcSin[c*x]])/(8*c) - (a + b*ArcSin[c*x])^(3/2)/(4*c^2) + (x^2*(a + b*ArcS
in[c*x])^(3/2))/2 - (3*b^(3/2)*Sqrt[Pi]*Cos[(2*a)/b]*FresnelS[(2*Sqrt[a + b*ArcSin[c*x]])/(Sqrt[b]*Sqrt[Pi])])
/(32*c^2) + (3*b^(3/2)*Sqrt[Pi]*FresnelC[(2*Sqrt[a + b*ArcSin[c*x]])/(Sqrt[b]*Sqrt[Pi])]*Sin[(2*a)/b])/(32*c^2
)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3304

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[(f*x^2)/d],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3306

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 4629

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^(m + 1)*(a + b*ArcSin[c*x])^n)/(m
 + 1), x] - Dist[(b*c*n)/(m + 1), Int[(x^(m + 1)*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1 - c^2*x^2], x], x] /; Fre
eQ[{a, b, c}, x] && IGtQ[m, 0] && GtQ[n, 0]

Rule 4635

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*S
in[x]^m*Cos[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 4641

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSin[c*x])^
(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && NeQ[n,
-1]

Rule 4707

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
(f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcSin[c*x])^n)/(e*m), x] + (Dist[(f^2*(m - 1))/(c^2*m), Int[((f*x)^(m
 - 2)*(a + b*ArcSin[c*x])^n)/Sqrt[d + e*x^2], x], x] + Dist[(b*f*n*Sqrt[1 - c^2*x^2])/(c*m*Sqrt[d + e*x^2]), I
nt[(f*x)^(m - 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] &&
GtQ[n, 0] && GtQ[m, 1] && IntegerQ[m]

Rubi steps

\begin {align*} \int x \left (a+b \sin ^{-1}(c x)\right )^{3/2} \, dx &=\frac {1}{2} x^2 \left (a+b \sin ^{-1}(c x)\right )^{3/2}-\frac {1}{4} (3 b c) \int \frac {x^2 \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {1-c^2 x^2}} \, dx\\ &=\frac {3 b x \sqrt {1-c^2 x^2} \sqrt {a+b \sin ^{-1}(c x)}}{8 c}+\frac {1}{2} x^2 \left (a+b \sin ^{-1}(c x)\right )^{3/2}-\frac {1}{16} \left (3 b^2\right ) \int \frac {x}{\sqrt {a+b \sin ^{-1}(c x)}} \, dx-\frac {(3 b) \int \frac {\sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {1-c^2 x^2}} \, dx}{8 c}\\ &=\frac {3 b x \sqrt {1-c^2 x^2} \sqrt {a+b \sin ^{-1}(c x)}}{8 c}-\frac {\left (a+b \sin ^{-1}(c x)\right )^{3/2}}{4 c^2}+\frac {1}{2} x^2 \left (a+b \sin ^{-1}(c x)\right )^{3/2}-\frac {\left (3 b^2\right ) \operatorname {Subst}\left (\int \frac {\cos (x) \sin (x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{16 c^2}\\ &=\frac {3 b x \sqrt {1-c^2 x^2} \sqrt {a+b \sin ^{-1}(c x)}}{8 c}-\frac {\left (a+b \sin ^{-1}(c x)\right )^{3/2}}{4 c^2}+\frac {1}{2} x^2 \left (a+b \sin ^{-1}(c x)\right )^{3/2}-\frac {\left (3 b^2\right ) \operatorname {Subst}\left (\int \frac {\sin (2 x)}{2 \sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{16 c^2}\\ &=\frac {3 b x \sqrt {1-c^2 x^2} \sqrt {a+b \sin ^{-1}(c x)}}{8 c}-\frac {\left (a+b \sin ^{-1}(c x)\right )^{3/2}}{4 c^2}+\frac {1}{2} x^2 \left (a+b \sin ^{-1}(c x)\right )^{3/2}-\frac {\left (3 b^2\right ) \operatorname {Subst}\left (\int \frac {\sin (2 x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{32 c^2}\\ &=\frac {3 b x \sqrt {1-c^2 x^2} \sqrt {a+b \sin ^{-1}(c x)}}{8 c}-\frac {\left (a+b \sin ^{-1}(c x)\right )^{3/2}}{4 c^2}+\frac {1}{2} x^2 \left (a+b \sin ^{-1}(c x)\right )^{3/2}-\frac {\left (3 b^2 \cos \left (\frac {2 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sin \left (\frac {2 a}{b}+2 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{32 c^2}+\frac {\left (3 b^2 \sin \left (\frac {2 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cos \left (\frac {2 a}{b}+2 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{32 c^2}\\ &=\frac {3 b x \sqrt {1-c^2 x^2} \sqrt {a+b \sin ^{-1}(c x)}}{8 c}-\frac {\left (a+b \sin ^{-1}(c x)\right )^{3/2}}{4 c^2}+\frac {1}{2} x^2 \left (a+b \sin ^{-1}(c x)\right )^{3/2}-\frac {\left (3 b \cos \left (\frac {2 a}{b}\right )\right ) \operatorname {Subst}\left (\int \sin \left (\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{16 c^2}+\frac {\left (3 b \sin \left (\frac {2 a}{b}\right )\right ) \operatorname {Subst}\left (\int \cos \left (\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{16 c^2}\\ &=\frac {3 b x \sqrt {1-c^2 x^2} \sqrt {a+b \sin ^{-1}(c x)}}{8 c}-\frac {\left (a+b \sin ^{-1}(c x)\right )^{3/2}}{4 c^2}+\frac {1}{2} x^2 \left (a+b \sin ^{-1}(c x)\right )^{3/2}-\frac {3 b^{3/2} \sqrt {\pi } \cos \left (\frac {2 a}{b}\right ) S\left (\frac {2 \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b} \sqrt {\pi }}\right )}{32 c^2}+\frac {3 b^{3/2} \sqrt {\pi } C\left (\frac {2 \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b} \sqrt {\pi }}\right ) \sin \left (\frac {2 a}{b}\right )}{32 c^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.07, size = 126, normalized size = 0.73 \[ \frac {b^2 e^{-\frac {2 i a}{b}} \left (\sqrt {-\frac {i \left (a+b \sin ^{-1}(c x)\right )}{b}} \Gamma \left (\frac {5}{2},-\frac {2 i \left (a+b \sin ^{-1}(c x)\right )}{b}\right )+e^{\frac {4 i a}{b}} \sqrt {\frac {i \left (a+b \sin ^{-1}(c x)\right )}{b}} \Gamma \left (\frac {5}{2},\frac {2 i \left (a+b \sin ^{-1}(c x)\right )}{b}\right )\right )}{16 \sqrt {2} c^2 \sqrt {a+b \sin ^{-1}(c x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x*(a + b*ArcSin[c*x])^(3/2),x]

[Out]

(b^2*(Sqrt[((-I)*(a + b*ArcSin[c*x]))/b]*Gamma[5/2, ((-2*I)*(a + b*ArcSin[c*x]))/b] + E^(((4*I)*a)/b)*Sqrt[(I*
(a + b*ArcSin[c*x]))/b]*Gamma[5/2, ((2*I)*(a + b*ArcSin[c*x]))/b]))/(16*Sqrt[2]*c^2*E^(((2*I)*a)/b)*Sqrt[a + b
*ArcSin[c*x]])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [C]  time = 2.09, size = 845, normalized size = 4.91 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))^(3/2),x, algorithm="giac")

[Out]

1/4*I*sqrt(pi)*a^2*b^(3/2)*erf(-sqrt(b*arcsin(c*x) + a)/sqrt(b) - I*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))*e^
(2*I*a/b)/((b^2 + I*b^3/abs(b))*c^2) - 1/8*sqrt(pi)*a*b^(5/2)*erf(-sqrt(b*arcsin(c*x) + a)/sqrt(b) - I*sqrt(b*
arcsin(c*x) + a)*sqrt(b)/abs(b))*e^(2*I*a/b)/((b^2 + I*b^3/abs(b))*c^2) - 1/4*I*sqrt(pi)*a^2*b^(3/2)*erf(-sqrt
(b*arcsin(c*x) + a)/sqrt(b) + I*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))*e^(-2*I*a/b)/((b^2 - I*b^3/abs(b))*c^2
) - 1/8*sqrt(pi)*a*b^(5/2)*erf(-sqrt(b*arcsin(c*x) + a)/sqrt(b) + I*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))*e^
(-2*I*a/b)/((b^2 - I*b^3/abs(b))*c^2) + 1/8*sqrt(pi)*a*b^2*erf(-sqrt(b*arcsin(c*x) + a)/sqrt(b) - I*sqrt(b*arc
sin(c*x) + a)*sqrt(b)/abs(b))*e^(2*I*a/b)/((b^(3/2) + I*b^(5/2)/abs(b))*c^2) + 1/4*I*sqrt(pi)*a^2*b*erf(-sqrt(
b*arcsin(c*x) + a)/sqrt(b) + I*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))*e^(-2*I*a/b)/((b^(3/2) - I*b^(5/2)/abs(
b))*c^2) + 1/8*sqrt(pi)*a*b^2*erf(-sqrt(b*arcsin(c*x) + a)/sqrt(b) + I*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))
*e^(-2*I*a/b)/((b^(3/2) - I*b^(5/2)/abs(b))*c^2) - 1/4*I*sqrt(pi)*a^2*sqrt(b)*erf(-sqrt(b*arcsin(c*x) + a)/sqr
t(b) - I*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))*e^(2*I*a/b)/((b + I*b^2/abs(b))*c^2) + 3/64*I*sqrt(pi)*b^(5/2
)*erf(-sqrt(b*arcsin(c*x) + a)/sqrt(b) - I*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))*e^(2*I*a/b)/((b + I*b^2/abs
(b))*c^2) - 3/64*I*sqrt(pi)*b^(5/2)*erf(-sqrt(b*arcsin(c*x) + a)/sqrt(b) + I*sqrt(b*arcsin(c*x) + a)*sqrt(b)/a
bs(b))*e^(-2*I*a/b)/((b - I*b^2/abs(b))*c^2) - 1/8*sqrt(b*arcsin(c*x) + a)*b*arcsin(c*x)*e^(2*I*arcsin(c*x))/c
^2 - 1/8*sqrt(b*arcsin(c*x) + a)*b*arcsin(c*x)*e^(-2*I*arcsin(c*x))/c^2 - 1/8*sqrt(b*arcsin(c*x) + a)*a*e^(2*I
*arcsin(c*x))/c^2 - 3/32*I*sqrt(b*arcsin(c*x) + a)*b*e^(2*I*arcsin(c*x))/c^2 - 1/8*sqrt(b*arcsin(c*x) + a)*a*e
^(-2*I*arcsin(c*x))/c^2 + 3/32*I*sqrt(b*arcsin(c*x) + a)*b*e^(-2*I*arcsin(c*x))/c^2

________________________________________________________________________________________

maple [A]  time = 0.10, size = 267, normalized size = 1.55 \[ -\frac {-3 \sqrt {\frac {1}{b}}\, \sqrt {a +b \arcsin \left (c x \right )}\, \sin \left (\frac {2 a}{b}\right ) \FresnelC \left (\frac {2 \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) \sqrt {\pi }\, b^{2}+3 \sqrt {\frac {1}{b}}\, \sqrt {a +b \arcsin \left (c x \right )}\, \cos \left (\frac {2 a}{b}\right ) \mathrm {S}\left (\frac {2 \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) \sqrt {\pi }\, b^{2}+8 \arcsin \left (c x \right )^{2} \cos \left (\frac {2 a +2 b \arcsin \left (c x \right )}{b}-\frac {2 a}{b}\right ) b^{2}-6 \arcsin \left (c x \right ) \sin \left (\frac {2 a +2 b \arcsin \left (c x \right )}{b}-\frac {2 a}{b}\right ) b^{2}+16 \arcsin \left (c x \right ) \cos \left (\frac {2 a +2 b \arcsin \left (c x \right )}{b}-\frac {2 a}{b}\right ) a b -6 \sin \left (\frac {2 a +2 b \arcsin \left (c x \right )}{b}-\frac {2 a}{b}\right ) a b +8 \cos \left (\frac {2 a +2 b \arcsin \left (c x \right )}{b}-\frac {2 a}{b}\right ) a^{2}}{32 c^{2} \sqrt {a +b \arcsin \left (c x \right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arcsin(c*x))^(3/2),x)

[Out]

-1/32/c^2*(-3*(1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)*sin(2*a/b)*FresnelC(2/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(c*x))
^(1/2)/b)*Pi^(1/2)*b^2+3*(1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)*cos(2*a/b)*FresnelS(2/Pi^(1/2)/(1/b)^(1/2)*(a+b*a
rcsin(c*x))^(1/2)/b)*Pi^(1/2)*b^2+8*arcsin(c*x)^2*cos(2*(a+b*arcsin(c*x))/b-2*a/b)*b^2-6*arcsin(c*x)*sin(2*(a+
b*arcsin(c*x))/b-2*a/b)*b^2+16*arcsin(c*x)*cos(2*(a+b*arcsin(c*x))/b-2*a/b)*a*b-6*sin(2*(a+b*arcsin(c*x))/b-2*
a/b)*a*b+8*cos(2*(a+b*arcsin(c*x))/b-2*a/b)*a^2)/(a+b*arcsin(c*x))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \arcsin \left (c x\right ) + a\right )}^{\frac {3}{2}} x\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*arcsin(c*x) + a)^(3/2)*x, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int x\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b*asin(c*x))^(3/2),x)

[Out]

int(x*(a + b*asin(c*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x \left (a + b \operatorname {asin}{\left (c x \right )}\right )^{\frac {3}{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*asin(c*x))**(3/2),x)

[Out]

Integral(x*(a + b*asin(c*x))**(3/2), x)

________________________________________________________________________________________